Lecture 16. Mechanical Vibrations Part 1

Lecture 16. Mechanical Vibrations Part 1
Mass-spring-dashpot system
1. Free Undamped Motion (c = 0 and F(t) =
2. Free Damped Motion (c > 0 and F(t) = 0)
Case 1. Overdamped (02 > 4km, two distinct real roots)
Case 2. Critically damped (c? = 4km, repeated real roots)
Case 3. Underdamped (c? < 4km, two complex roots)
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Mass-spring-dashpot system

)

|
Equilibrium

position
e Restorative force Fig = —ka, where k > 0 is spring constant (Hooke's law).
dz
e The dashpot provides force Fr = —cv = —c%, where ¢ > ( is damping constant.

e External force Fp = F(t).
e The total force acting of the massis F' = F'¢ + Fr + Fg.

e Using Newton's law,

d’z
F=ma=m— = mz"
dt?

we have the following second-order linear differential equation
mz" + cz' + kx = F(t)
e Ifc = 0, we call the motion undamped. If ¢ > 0, we call the motion damped.

e If F(t) = 0, we call the motion free. If F'(t) # 0, we call the motion forced.



@2 An important note before we start analyzing the general cases:

Rather than memorizing the various formulas given in the discussion below, it is better to practice a
particular case to set up the differential equation and then solve it directly.

1. Free Undamped Motion (c = 0 and F'(t) = 0)

Our general differential equation takes the simpler form

mz"” + kx = 0.
e |tis convenient to define
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Remark:

B
e Although tan o = —, the angle avis not given by the principal branch of the inverse tangent function,

which gives value only in (—%, 1)

2
: : B : .
e Instead, a is the angle between 0 and 27 such that sina = Yok cosa = Yok where either A or B might
be negative.
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e So we have

z(t) = C cos (wot — o)
where w, C' and « are obtained as above.

e We call such motion simple harmonic motion. A typical graph of such motion is as
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e To summarize, it has
Name Symbol Quick note
. C =V A? + B? where z(t) = Acoswyt + Bsinwyt is the solution for the
Amplitude C ) " )
equation " + wgz = 0.
Circular k
WO wO = —_—
frequency m
Phase angle o Obtained by formula (2) above
. 2m : : i
Period T=— Time required for the system to complete one full oscillation
wo
1 wo
V= — = —
Frequency T 2w It measures the number of complete cycles per second.



Example 1

e A body with mass m = 0.5 kilogram (kg) is attached to the end of a spring that is stretched 2 meters (m)

by a force of 100 newtons (N).
Y X(0)= 1 Vio) = X' (0)= -85

e |tis setin motion with initial position xo = 1 (m) and initial velocity v = —5 (m/s). (Note that these initial
conditions indicate that the body is displaced to the right and is moving to the left at time ¢ = 0.)

e Find the position function of the body in the form C cos(wgt — «) as well as the amplitude, frequency and
period of its motion.
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2. Free Damped Motion (¢ > 0 and F'(t) = 0)

In this case, we consider >

mx” +cx' +kx =0
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We have the following three cases. \]

Case 1. Overdamped (c2 > 4km, two distinct real roots)
Figure Analysis

Eq(3) gives two distinct real roots 71 and ro( both < 0). The

position function
(03 X0)1
z(t) = cre™ + coe™
=
0
\/ Note
0 .
¢ lim z(t) =0
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FIGURE 3.4.7. Overdamped
motion: x(¢) = c1e”1! + cpe”2! with

r1 < 0and r» < 0. Solution curves are . . - . .
graplicd with the same iitid] position (The object will go to the equilibrum position without any

xo and different initial velocities. ocillation S.)



Case 2. Critically damped (c® = 4km, repeated real roots)

Figure
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FIGURE 3.4.8. Critically damped
motion: x(¢) = (c1 + c2t)e P! with
p > 0. Solution curves are graphed
with the same initial position xg and
different initial velocities.

Analysis

Eq(3) has roots 71 = ry = —p. The general solution for
the position function.

z(t) = e P (c1 + cot)
and

lim z(t) =0

t—o00

The resistance of the dashpot is just enough to damp
out any oscillations.

Case 3. Underdamped (c2 < 4km, two complex roots)

Figure
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FIGURE 3.4.9. Underdamped
oscillations:
x() = Ce Pl cos(wit — ).

Analysis

Eq(3) has roots 712 = —p + i4/wp? — p? = —p + wit,
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The general solution for the position function
z(t) = e P (Acoswit + Bsinwit)
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Example 2.

Suppose that the mass in a mass-spring-dashpot system with m = 6,¢ = 7, and k = 2 is set in motion with
z(0) =0and z(0)" = 2.

(a) Find the position function z(t).

(b) Find how far the mass moves to the right before starting back toward the origin.
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Exercise 3. For the differential equation
1 /
s +bs +9s =0,
find the values of b that make the general solution overdamped, underdamped, or critically damped.

Solution.

The corresponding characteristic equation is
rP4+br+9=0

From the previous discussion, we know the general solution is overdamped when the solution for r has two
distinct roots. It is underdamped if the solution for 7 is a pair of complex numbers. It is critically damped if the
solution for r is repeated. Also we know b represents the damping constant, so b > 0.

Therefore,

e the system is overdamped when A = b* — 4 x 9 > 0 = b? > 36. Combing the fact that b > 0 we
know b > 6.

e the system is critically damped when A = b?> —4 x 9 =0 == b = £6. Combing the fact that b > 0 we
know b = 6.

e the system is underdamped when A = b? —4 x 9 < 0 = b% < 36. Combing the fact that b > 0 we
know 0 < b < 6.

Exercise 4.
(1) Using a trig identity, write x(t) = — cos(9¢) + 5sin(9¢t) using only one cosine function.
(2) Using a trig identity, write z(t) = cos(9t) + 5 sin(9¢) using only one cosine function.

(3) Using a trig identity, write z(t) = e %(— cos(9t) + 5sin(9t)) using only one cosine function in your
answer.

Solution.
(1) Let z(t) = — cos(9¢t) + 5sin(9t) = A cos(9t) + Bsin(9t) = C cos(f — o), where A = —1and B = 5.
From the discussion in our lecture notes, we know « is in the second quadrant and

C=+A2 1 B?=,/(—1)2+52 =1+ 25 =+/26

You can either apply the formula given in Eq (3) or draw the triangle and compute the value of a.

e Applying the formula, we know o = 7 + arctan(—5) = 7 — arctan(5).

e Or we can draw the following triangle with sides A, B, and C, we have o = T — arctan(5), which is the
same as applying the formula.
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Thus we have

z(t) = — cos(9t) + 5sin(9t) = v/26 cos(9t — 7 + arctan(5)).

(2) The steps for solving this problem is similar to previous one. Note this time « is in the first quadrant. So we
have

z(t) = — cos(9t) + 5sin(9t) = /26 cos(9t — arctan(5))

(3) Note the steps for solving this case is again similar to the question (1). The difference is that we need to

multiply e =% everywhere in z(t). So we have

z(t) = e 3 (— cos(9t) + 5sin(9t)) = v/26e 3 cos(9t — 7 + arctan(5))

Exercise 5. If the differential equation

is overdamped, the range of values for m is?
Solution.

The corresponding characteristic equation is
mrl+8r+4=0
The system is overdamped if it has two distinct solutions for 7. That is when A = 82 — 16m > 0

Also as m is representing the mass of the object, m > 0. Sowe have 0 < m < 4.



