Lecture 16. Mechanical Vibrations Part 1

Lecture 16. Mechanical Vibrations Part 1

- **Mass-spring-dashpot system**
	- **1. Free Undamped Motion** ($c = 0$ and $F(t) = 0$)
	- **2. Free Damped Motion** ($c > 0$ and $F(t) = 0$)
		- **Case 1. Overdamped** ($c^2 > 4km$, two distinct real roots)
		- **Case 2. Critically damped** ($c^2 = 4km$, repeated real roots)
		- **Case 3. Underdamped** ($c^2 < 4km$, two complex roots)

Mass-spring-dashpot system

- **•** Restorative force $F_S = -kx$, where $k > 0$ is **spring constant** (Hooke's law).
- $\bullet \,\,$ The dashpot provides force $F_R = -cv = -c\frac{dx}{dt}$, where $c>0$ is **damping constant**.
- **External force** $F_E = F(t)$.
- The total force acting of the mass is $F = F_S + F_R + F_E$.
- Using Newton's law,

$$
F=ma=m\frac{d^2x}{dt^2}=mx''
$$

we have the following second-order linear differential equation

$$
mx'' + cx' + kx = F(t) \tag{1}
$$

- If $c = 0$, we call the motion **undamped**. If $c > 0$, we call the motion **damped**.
- If $F(t) = 0$, we call the motion **free**. If $F(t) \neq 0$, we call the motion **forced.**

Solution An important note before we start analyzing the general cases:

Rather than memorizing the various formulas given in the discussion below, it is better to practice a particular case to set up the differential equation and then solve it directly.

1. Free Undamped Motion ($c=0$ and $F(t)=0$)

Our general differential equation takes the simpler form

$$
mx'' + kx = 0.
$$

• It is convenient to define

$$
\omega_0=\sqrt{\frac{k}{m}}
$$

• Then we can rewrite our equation in the form

$$
x''+\omega_0^2x=0
$$

• The general solution of this equation is

• The general solution of this equation is
\n
$$
\Rightarrow r^{2} = W_{0} \Rightarrow P^{2} = W_{0} \Rightarrow P^{2} = W_{0} \Rightarrow P^{2} = W_{0} \Rightarrow P^{2} = W_{0} \Rightarrow P = \pm W_{0} \Rightarrow P =
$$

$$
C=\sqrt{A^2+B^2}
$$

• Question 2. What is the angle α ?

$$
B \xrightarrow{ \cos \alpha = \frac{1}{C} \text{ s.t. } \alpha \leq \frac{1}{C} \
$$

ı

 Δ

$$
\Rightarrow \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{B}{C}}{\frac{A}{C}} = \frac{B}{A}
$$

Recall $\tan^{-1}\beta$ $\in (-\frac{\pi}{2}, \frac{\pi}{2})$
However, we want to express $\alpha \in [0, 2\pi)$

The char. eqn. is
 $r^2+w_0^2=0$

Remark:

- Although $\tan\alpha=\dfrac{B}{A}$, the angle α is not given by the principal branch of the inverse tangent function, which gives value only in $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- Instead, α is the angle between 0 and 2π such that $\sin \alpha = \frac{1}{\sqrt{2}}$, $\cos \alpha = \frac{1}{\sqrt{2}}$. where either A or B might be negative. σ α β > 0 1 .
… - - - $\frac{1}{x}$ "

,

>

!

⼈

A ☆ \overrightarrow{a}

• Thus

$$
\alpha = \begin{cases} \tan^{-1}(B/A) & \text{if } A > 0, B > 0 \text{ (first quadrant)} \\ \pi + \tan^{-1}(B/A) & \text{if } A < 0 \text{ (second or third quadrant)} \\ 2\pi + \tan^{-1}(B/A) & \text{if } A > 0, B < 0 \text{ (fourth quadrant)} \end{cases}
$$

where $\tan^{-1}(B/A)$ is the angle in $(-\pi/2,\pi/2)$ given by a calculator or computer.

So we have

$$
x(t)=C\cos{(\omega_0 t-\alpha)}
$$

where ω , C and α are obtained as above.

We call such motion **simple harmonic motion.** A typical graph of such motion is as

To summarize , it has

Example 1

- A body with mass $m = 0.5$ kilogram (kg) is attached to the end of a spring that is stretched 2 meters (m)
by a force of 100 newtons (N).
 $x(0) = 1$ $y(0) = x'(0) = -5$ by a force of 100 newtons (N). $(0) = -5$
- It is set in motion with initial position $x_0 = 1$ (m) and initial velocity $v = -5$ (m/s). (Note that these initial conditions indicate that the body is displaced to the right and is moving to the left at time $t = 0$.)
- $\bullet~$ Find the position function of the body in the form $C\cos(\omega_0 t-\alpha)$ as well as the amplitude, frequency and period of its motion.

ANS: Find k: $F = -kx \implies loo = 2k \implies k = 50N/m$ Then we howe le
0.5 \times " + 50 x = 0, x10) = 1, x'10)= -5. \Rightarrow x"+100 x = 0 (x"+ Wo x = 0, Wo = 10) The char. eg is r^2 $4100 = 0 \Rightarrow Y = \pm 10i$ The general solution is $x(t) = A \cos(\theta t + B \sin(\theta t))$ where ^A and^B areconstants. As $x|00 = 1$, $x|00 = A = 1$, A_{s} $x'(t) = -10$ A shot t $10B \cos 10t$, $x'(0)=$ - 5 We know $x'(0) = |0B=-5 \implies B=-\frac{1}{2}$ Thus $x(t) = cos|0t - \frac{1}{2}sin|0t|$ The amplitude of the motion is \mathcal{C} = the motion is
 $\sqrt{A^2+B^2} = \sqrt{1+(1-1)^2} = \sqrt{1+1/4} = \frac{\sqrt{5}}{2}$ m Thus we have

$$
x(t) = \cos(\sigma t - \frac{1}{2} \sin(\sigma t))
$$

= $\frac{\sqrt{5}}{2} \left(\frac{2}{\sqrt{5}} \cos(\sigma t - \frac{1}{\sqrt{5}} \sin(\sigma t))$
= $\frac{\sqrt{5}}{2} \left(\frac{2}{\sqrt{5}} \cos(\sigma t - \frac{1}{\sqrt{5}} \sin(\sigma t)) \right)$
= $\frac{\sqrt{5}}{2} \left(\frac{2}{\sqrt{5}} \cos(\sigma t) - \frac{1}{\sqrt{5}} \sin(\sigma t) \right)$

We text
$$
\beta
$$
 as an angle in between $0 \text{ to } \frac{\pi}{2}$.
\n $\alpha = 2\pi - \beta = 2\pi - \tan^{-1} \frac{1}{2} = 2\pi - \tan^{-1} \frac{1}{2}$ $\approx 5.8195 \text{ rad}$
\nAssuming $\beta \in (0, \frac{\pi}{2})$

You can also use the formula on page 3 by identifying
\n
$$
\alpha
$$
 is in the 4th quadrant.

2. Free Damped Motion ($c > 0$ and $F(t) = 0$)

In this case, we consider

$$
mx'' + cx' + kx = 0 \Rightarrow x'' + \frac{2}{\sqrt{m}}x' + \frac{k}{\sqrt{m}}x = 0
$$

Let
$$
\omega_0 = \sqrt{k/m}
$$
 and $p = \frac{c}{2m} > 0$. We have

$$
x''+2px'+\omega_0^2x=0
$$

The characteristic equation

$$
x'' + 2px' + \omega_0^2 x = 0
$$

$$
r^2 + 2pr + \omega_0^2 = 0 \implies r_{1,2} = \frac{-2p \pm \sqrt{4p^2 + 4\omega_0^2}}{2}
$$
 (3)

has roots

 $r_1,r_2=-p\pm\sqrt{p^2-\omega_0^2}$

Note

$$
p^2-\omega_0^2=\frac{c^2-4km}{4m^2}
$$

← ≈ Recaell there are ³ cases I . listimat real roots 2 . Repeated roots 3 . complex conjngate roots

We have the following three cases.

Case 1. Overdamped ($c^2 > 4km$, two distinct real roots)

Eq(3) gives two distinct real roots r_1 and r_2 (both < 0). The position function

$$
x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}
$$

Note

$$
\lim_{t\to\infty}x(t)=0
$$

FIGURE 3.4.7. Overdamped
motion: $x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ with
 $r_1 < 0$ and $r_2 < 0$. Solution curves are graphed with the same initial position x_0 and different initial velocities.

(The object will go to the equilibrum position without any ocillations.)

Case 2. Critically damped ($c^2 = 4km$, repeated real roots)

Case 3. Underdamped ($c^2 < 4km$, two complex roots)

Example 2.

Suppose that the mass in a mass-spring-dashpot system with $m=6, c=7,$ and $k=2$ is set in motion with $x(0) = 0$ and $x(0)' = 2$.

- (a) Find the position function $x(t)$.
- (b) Find how far the mass moves to the right before starting back toward the origin.

 $\Rightarrow \ln \frac{4}{3} = \frac{t}{6}$ \Rightarrow $t = \ln \frac{4}{3}$ \approx 1.726095 Thus $x (6 \ln \frac{4}{3}) = \frac{81}{64} x 1.26563 m$ **Exercise 3.** For the differential equation

$$
s^{\prime\prime}+bs^{\prime}+9s=0,
$$

find the values of b that make the general solution overdamped, underdamped, or critically damped.

Solution.

The corresponding characteristic equation is

$$
r^2 + br + 9 = 0
$$

From the previous discussion, we know the general solution is overdamped when the solution for r has two distinct roots. It is underdamped if the solution for r is a pair of complex numbers. It is critically damped if the solution for r is repeated. Also we know b represents the damping constant, so $b > 0$.

Therefore,

- the system is overdamped when $\Delta = b^2 4 \times 9 > 0 \implies b^2 > 36$. Combing the fact that $b > 0$ we know $b > 6$.
- the system is critically damped when $\Delta = b^2 4 \times 9 = 0 \implies b = \pm 6$. Combing the fact that $b > 0$ we know $b = 6$.
- the system is underdamped when $\Delta = b^2 4 \times 9 < 0 \implies b^2 < 36$. Combing the fact that $b > 0$ we know $0 < b < 6$.

Exercise 4.

(1) Using a trig identity, write $x(t) = -\cos(9t) + 5\sin(9t)$ using only one cosine function.

(2) Using a trig identity, write $x(t) = \cos(9t) + 5\sin(9t)$ using only one cosine function.

(3) Using a trig identity, write $x(t) = e^{-3t}(-\cos(9t) + 5\sin(9t))$ using only one cosine function in your answer.

Solution.

(1) Let
$$
x(t) = -\cos(9t) + 5\sin(9t) = A\cos(9t) + B\sin(9t) = C\cos(\theta - \alpha)
$$
, where $A = -1$ and $B = 5$.

From the discussion in our lecture notes, we know α is in the second quadrant and

$$
C = \sqrt{A^2 + B^2} = \sqrt{(-1)^2 + 5^2} = \sqrt{1 + 25} = \sqrt{26}
$$

You can either apply the formula given in Eq (3) or draw the triangle and compute the value of α .

- Applying the formula, we know $\alpha = \pi + \arctan(-5) = \pi \arctan(5)$.
- Or we can draw the following triangle with sides A, B, and C, we have $\alpha = \pi \arctan(5)$, which is the same as applying the formula.

Thus we have

 $x(t) = -\cos(9t) + 5\sin(9t) = \sqrt{26}\cos(9t - \pi + \arctan(5)).$

(2) The steps for solving this problem is similar to previous one. Note this time α is in the first quadrant. So we have

$$
x(t) = -\cos(9t) + 5\sin(9t) = \sqrt{26}\cos(9t - \arctan(5))
$$

(3) Note the steps for solving this case is again similar to the question (1). The difference is that we need to multiply e^{-5t} everywhere in $x(t)$. So we have

 $x(t) = e^{-3t}(-\cos(9t) + 5\sin(9t)) = \sqrt{26}e^{-3t}\cos(9t - \pi + \arctan(5))$

Exercise 5. If the differential equation

$$
m\frac{d^2x}{dt^2}+8\frac{dx}{dt}+4x=0
$$

is overdamped, the range of values for m is?

Solution.

The corresponding characteristic equation is

$$
mr^2+8r+4=0\\
$$

The system is overdamped if it has two distinct solutions for $r.$ That is when $\Delta=8^2-16m>0$

Also as m is representing the mass of the object, $m > 0$. So we have $0 < m < 4$.